バイポーラトラジスタ回路の設計

このページよりさらに詳しく広範囲に解説し、練習問題も加えたPDFワークシート「なぁ〜んちゃって電子工学」(http://doku.bimyo.jp/electronics/index.html)を掲載しました。ご利用下さい。

はじめに

 このページでは、バイポーラトランジスタを使用した回路を設計するための知識の一部を提供します。このページを作るにあたって留意した点は次の通りです。
  1. 実用的な回路設計が短時間でできるようにすること、そのためには学問的な厳密さを犠牲にすること
  2. 数式を少なくして「図」と「イメージ」で理解できるよう説明すること
  3. 等価回路に置き換えることなく、回路図を見て直接的に動作を理解し、設計できるようにすること
  4. 公式を覚えて表面的に設計できるのではなく、根源的な理解を元に設計できるようにすること
    →根源的に理解して設計いないと、回路に問題が起きたとき、原因を解明して解決できません。困りますね。
  5. トランジスタ回路設計の理解に必要な基礎的な内容も説明すること
  6. 基礎的な内容も、必要になる都度紹介して、予備知識が少なくても理解できるようにすること
  7. 説明は順序を明確にして、解り易く工夫すること
 但し、内容的には古いです、たとえば、電力回路でもパワーMOSFETではなく、バイポーラのパワートランジスタを使用して説明しています。さらに、抵抗の図記号についても、1952年に制定されたJIS C 0301の旧記号(ギザギザのマーク)を恥らう事なく使っています。これは、現場の技術者が現時点では抵抗を旧JIS記号で書いている現実があるからです。
 しかし、バイポーラトランジスタを使った回路設計が分かってしまえば、あとは、新しい素子についての勉強を補うことで、それらの素子を使った回路を設計することは容易です。
 基本的な考え方は、名著『プログラム学習による半導体回路T』『プログラム学習による半導体回路U』(職業能力開発教材委員会編集)に準拠しており、それを補完し、発展させた内容になっています。ですから、交流信号については、エミッタ等価インピーダンスreで考えます。また、このため上記書籍と内容が類似する部分が現れますが、これは、トランジスタを説明するためには仕方のない事ですのでお許しください。
 『半導体回路TU』は名著ですが、ページ数の制限上か、重要ないくつかの点の説明が欠落しており、残念ながその部分を補わなければ、実用的な回路を設計することができません。このページではその点にも言及して「設計できる!」「作れる!」「動作する!」「使える!」を目指して書き進めます。

実際の接続と、回路図の表記

 いきなり回路図が出てきましたが、図の回路がどのような動作をするのか、今は全く理解する必要はありません。ここでは、回路図の書き方を説明します。


実際の接続と回路図の表記

 回路図は描く手間を省くため、実際に配線する通りには書きません。図の左側が本当の接続(配線)、右側が回路図の例です。
ポイントは…
  1. 電源(12Vの電池)は省略されます
  2. 電源(12Vの部分)の配線は記号で表されます
  3. 0Vの部分はアース記号で表されます
  4. 電線が交わり、接続している部分には必ず「黒丸」を付けます
  5. (動作を理解し易くしたいなら)電圧の高い部分を図の上側に、電圧の低い部分を下側に書きます
このように書くことで回路を簡素に書き表すことができ、慣れれば分かりやすくなります。

直流電圧と電流の図示

 このページでは回路の動作をイメージで捉えられるように、電圧と電流を独特の記号で表します。これはJISなどの規格で決められたものではなく、理解し易いようにこのページが独自に採用しているものです。


直流電圧と電流の図示

ポイントは
  1. 電圧と電流を矢印で表します
  2. 電圧と電流をの記号を区別するために、電圧の矢印はお尻に横棒を付けます
    電圧を両方に矢じりのついた記号で表記する方法がありますが、これでは電圧の方向が分からないからです。

オームの法則は瞬間で使えるようになろう(旧式)

 だれでも知ってるオームの法則、でも、回路を見ながら自由自在に使うには「瞬間で使える」ということが大切です。昔からある方法は、次のようになものですが、あまりお勧めしません。

オームの法則の使い方(旧式)

 図の上中央に描いた、怪しい秘密結社のマークのようなものを書いて、自分の求めたい値を指で隠します、たとえば、電流Iを求めたいとすれば、Iの部分を隠せばE÷Rで求められることが分かるというものです。

オームの法則は瞬間で使えるようになろう(新型)

 しかし、上で説明した方法には難点もあります。いちいち秘密結社のマークを書かなくてはなりません。マークを忘れることもあります。多くの人に試したところ、この方法より、次の方法が優れていました。

お勧めの「オームの法則を瞬間で使う方法」は
  1. 電圧は必ず割られる(運命にある)
  2. 電圧が出て来なければ、2つを掛ける
この2つだけを覚えます。

【例1】
「2A流したら、6V発生した抵抗があります。何Ωですか」
→「電圧の6Vは必ず割られる」運命にありますので、答えは、
→ 6V÷2A=3Ω
と求めます。

【例2】
「6Ωの抵抗に2A流したら、何Vの電圧が発生しますか」
→「電圧の値が出て来ないので、出てきた値2つを掛けて」
→6Ω×2A=12V
と求めます。
慣れると、この方法が早いです。

トランジスタの「ありがたさ」と3つのポイント

 トランジスタの使った回路を設計するためにどうしても 必要な知識はそれほど多くありません。例えば、直流で の動作については、次の図に示す「3つのポイント」さえ 知っていれば、回路の状態を理解できます。


トランジスタの3つのポイント

つまりトランジスタの3つのポイントとは
  1. =I×hFE
     IのhFE倍のIが流れる
     IはIのhFE分の1である。
  2. ≒I
     IとIは同じと考える
  3. BE≒0.7V
     エミッタとベースの間の電圧VBEはトランジスタが普通に電流を流していれば、流す電流の大きさにかかわらず、概ね0.7Vである

3つのポイントで何が出来る

 さて、たった3つのポイントだけで何が出来るのか、これから 試してみましょう。

問題

 の回路を見てください。コレクタには6kΩ、エミッタ には1kΩが接続されています。電源電圧が12Vで、ベースに1.7Vを加えています。
  1. 出力電圧Vは何Vになるでしょうか
  2. ベースに流れ込む電流Iはいくらになるでしょうか

3つのポイントで何ができるか

答え


 この問題に、トランジスタの3つのポイントと、オームの法則だけで答えてゆきます。下の図の@AB…の番号と、次の説明の番号が対応しています。
  1. ベースには1.7Vが加わっている
  2. トランジスタのVBEは概ね0.7Vである
  3. 従って、エミッタ抵抗Rに加わる電圧は1Vである
  4. は1kΩであるから、流れる電流IREすなわち、Iは1mAである
  5. はIとほぼ等しいのでやはり1mAである
  6. 6kΩのRに1mAが流れているので、そこには、6Vの電圧が発生している
  7. 電源電圧が12Vである。
  8. 電源電圧からVRL(6V)だけ下がった電圧がVである。だから、Vは6Vである。

3つの基本で何ができるか


 このように、3つのポイントだけで簡単な回路の動きを理解することができました。さらに回路が複雑になっても、この3つのポイントは活躍し続けます。

お、増幅してる!

 先程の回路ではベースに1.7Vの電圧を加えていました。これを、僅か0.3V増やして、ベースに2Vを加えると、回路の状態はどのように変化するでしょうか。

増幅してるぞ!


 入力電圧を僅か0.3V増やしただけなのに、出力電圧は1.8Vも低下しました。つまりこの回路は、入力の電圧の変化を6倍に増幅(拡大)することができるのです。増幅の割合は、概ねR/Rで求まります。(詳しくは後程)
 これがトランジスタによる電圧増幅の基本の原理です。

トランジスタを安定動作させる(バイアス)

 先程の回路で、ベースに1.7Vの電池をつないでいたように、トランジスタは、ベースに一定の電圧を加えることで、初めて動作します。これを「ベースにバイアス電圧を掛ける」ともいいます。
 先程の例のように電池を使うと、そのうち無くなりますし、値段も高いので、電源電圧を2本の抵抗(普通RとRと呼ぶ)で分圧して、電圧を作ります。下の回路図は約2倍の電圧増幅器です。巧みに計算してベースにバイアス電圧を掛けたつもりです。
 ベース電圧は2.7Vにバイアスされ、エミッタには1mAのバイアス電流が流れています。
 Rに流れた20μAのうち、10μAはベースへ流れてしまうので、Rには10μAしか流れないと考えて設計しています。Rに流す電流が20μAと小さいので消費電流も少なく、一見優秀な設計に見えますね。

巧みに計算した(つもり)のバイアス回路

 ところがどっこい。トランジスタのhFEには通常2倍程度の誤差があるのです。例えば、同じ品種の同じランクでも、hFE=100〜200という感じで範囲が広いのです。上の回路図はぴったり100として計算していますが、運悪く(運良く)hFE=200のトランジスタがやってきたらどうなるか、下の図で見てみましょう。

FEが変わったら総崩れ


 hFEが200に大きくなると、ベース電流は10μAから6μAに減少し、ベースバイアス電圧VBBも2.7Vから3.3Vへと大幅上昇。そのうえ、エミッタ電流IEEも1mAから1.3mAに増加、結果として出力電圧VOOは当初予定の6Vから、4.9Vに減少してしまいました。殆ど総崩れ状態です。使い物になりませんね。

 このような総崩れ状態を防ぐために「とRに流す電流をケチケチしない」ことが大切です。少なくともベース電流(この例では10μA)の10倍、出来れば20〜30倍 たっぷりと流します。RやRに初めからタップリ電流が流れていれば、ベースへ流れる電流が多少変化しようが、Rの電流の変化の割合は小さくなり、ベースのバイアス電圧も殆ど変化しない、と考えるのです。100円しか持ってないときに、50円の買い物をすると、お金が半分に減ってしまいますが、10000円持っているなら、50円くらい使っても、減った気がしない(一万円札を崩すのは悔しいが…)のと同じですね。

タップリとバイアス電流IRABを流した回路

 上の回路はちょっとやりすぎかもしれませんが(100倍も流してる)RやRに1mAも流しておけば、ベース電流が10μAであろうが、5μAであろうが、ベースバイアス電圧の2.7Vはビクともしません。一般には10倍から20倍あたりが良く使われているようです。

トランジスタの3つの状態「工事中」

 トランジスタにはON/OFF/リニアの3つの状態があると言うことを回路図とグラフを重ね合わせてイメージで説明します。

スイッチング回路

 「照明をON/OFFをする」というように、私達の身の回りには、ONとOFFだけできれば、それで十分役に立つ場合が沢山あります。このような場合に、トランジスタのON状態とOFF状態を利用して、スイッチングという動作をさせます。つまり、トランジスタをスイッチとして使用する訳です。そのような回路を「スイッチング回路」と呼んでいます。ここでは、簡単なスイッチング回路を設計する方法を順を追って解説します。

ベースに流す電流と「オーバードライブ」

 トランジスタのON/OFFを利用して「スイッチを押すと、ランプが光る」という単純な回路を考えてみます。

ベースに流す電流を考える

上の回路図の@〜Hの番号が、次の説明の番号と対応していますから、順に見てみましょう。
  1. 豆球を光らせるためにはトランジスタをONにする
  2. すると、トランジスタのVCEは0Vとなる。
  3. 電源電圧は3Vだから…
  4. 豆球には3Vが加わる(もちろん豆球が点灯する)
  5. 3V、100mAの豆球だから、100mAのIが流れる
  6. そこで、IはI(100mA)のhFE(100)分の1、つまり1mA流せばよい筈だ、ところが、ここではその通りには行かない
    なぜなら、トランジスタがONになる(つまり、VCEが小さくなる)とhFEが3分の1くらいに減少してしまうからだ。このため、Iは1mAではなく、その3倍くらいの3mA流してやらなくてはならない
    この「3倍」等の「hFEの減少を補う倍率」を「オーバードライブ」と呼ぶ、つまり、この場合hFEが3分の1になると考えて「3倍のオーバードライブを掛けている」と言う。
  7. トランジスタに電流が流れているとき、VCEは概ね0.7V程度である
  8. 電源電圧が3Vだから、Rには2.3Vが加わる
  9. 2.3Vで3mA流れる抵抗だから、Rは767Ωと分かる
と、言う訳で、スイッチング回路では、ベース電流Iは単にIをhFEで割って求めるのではなく、オーバードライブを3倍程度掛けて求める必要があるのです。

悪者ICBOを退治する

残念ながら、上の回路には不具合があって、実用になりません。スイッチをOFFにしても、豆球が僅かに光ってしまのです。これでは、豆球を完全に消灯することができません。

ベースに流す電流を考える

その理由は次のようなものです。
  1. トランジスタは、例えばNPNと3層で構成されており、2つのPN接合面がある(図に緑色で書いた面)
  2. つまり、ダイオードを2つ合わせたものと考えることもできる
  3. ダイオードは本来、一方向だけに電流を流すけれど、逆向けにも少しは電流を漏らしてしまう
  4. トランジスタも同じで、コレクタからベースへは電流は流れない筈なのに、少しだけ電流が漏れる。これをICBOと呼ぶ。例えば1μAという僅かな電流だとする。
  5. CBOは行き場を求めて、ベースからエミッタへと流れ込む。
  6. ベースからエミッタに流れ込んだ電流はhFE倍されて、コレクタに流れてしまう。だから、ICBOはたったの1μアンペアだったのに、豆球には0.1mAの電流が流れ、薄く光ってしまう。
つまり、嫌われ者の電流「ICBO」が悪さをするので、何か工夫をしないと、完全に豆球をOFFできない訳です。ちなみに、この電流がICBOのと呼ばれる理由は次の通りです。

名前の由来

さて、この嫌われ者の電流電流ICBOを退治して、トランジスタを完全にOFFにして、豆球を完全に消灯するには、ベース(B)とエミッタ(E)の間にRBE呼ばれる抵抗を取り付けます。

CBOを退治する

つまり、トランジスタによるスイッチング回路では、ベースをオープンにすると、ICBOの悪影響で、トランジスタが完全にOFFしなくなるため、RBEと呼ばれる抵抗をベースとエミッタの間に接続することが必要です。
BEの値は1kΩくらいから、トランジスタによっては、20kΩ〜30kΩでも大丈夫です。
つまり、ICBOによってRBEの両端に発生する電圧が、0.1V程度(トランジスタを完全にOFFできるくらいの電圧)になるように設定すれば、良いわけです。
例えば2SC1815ではICBOは0.1μA程度ですから、RBEは10kΩでも大丈夫です。

スイッチング回路を設計する

最後に、RBEを取り付けて、完全にOFFにできるように改善したスイッチング回路を設計する手順を考えて見ましょう。

BEを使用したスイッチング回路の設計

  1. 豆球を光らすために、トランジスタをONにする
  2. ONになったトランスタのVCEは0Vとなる。
  3. 電源電圧は3Vだから…
  4. 豆球には3Vが掛かる
  5. 豆球は3V100mAのものを使用しているから、
  6. コレクタ電流は100mA流れる。
  7. FEは100〜200だが、電流が不足すると完全にONしなくなるので、小さいほうの100を使って設計する
  8. ベース電流はIをhFEで割ってオーバードライブの3を掛ければ求まり、3mAである。
  9. ところで、トランジスタに電流が流れているとき、VBEは約0.7Vである
  10. BEに1kΩを使用することにする(ICBOは1μAくらいと考えた)
  11. 1kΩに0.7Vが掛かっているので、RBEには0.7mAが流れる。
  12. には、ベース電流3mAととIRBE(RBEに流れる電流)0.7mAの合計が流れるので、IRB(Rに流れる電流)は3.7mAとなる。
  13. 電源電圧3Vで、VBEが0.7V程度だから、Rには、2.3Vが掛かっている。
  14. 2.3Vで3.7mA流れるから、Rの抵抗値は621Ωとすればよい。

鏡の国(NPNとPNP)「工事中」

 NPNトランジスタ(2SCxxxと2SDxxx)は良く説明に登場しますが、PNPトランジスタ(2SAxxxと2SBxxx)トランジスタはあまり説明されません。しかし、現実には組み合わせて使用されますので、考え方のコツを説明します。

設計と試作(豆電球点灯回路)「工事中」

 スイッチング回路を応用して、暗くなると自動的に豆球が点灯する回路を設計します。回路の構成は次の通り、CdSに流れる僅かな電流で、200mAの電球をON/OFFするために、トランジスタを2つ使ってスイッチングしています。

回路の動作(概要)


豆電球点灯回路

 明るさを検知するのは「CdS」という部品です。硫化カドミュウムという物質が光が当たると電流を流す性質を使って、明るさの変化を抵抗値の変化に変換します。ここでは、暗いとき10MΩ、明るいとき10kΩに変化するCdSを使用して設計します。

豆球が点灯するとき(暗い時)の回路の動作は次の通りです。
  1. 暗くなるとCdSの抵抗値が10Mオームとなり、R1を流れた電流は殆どトランジスタQ1のベースに流れ込みます。
  2. そのために、Q1はONになり、R3を通じて、Q2のベースから電流を吸い出します。
  3. これによって、Q2がONになり、豆電球に電流が流れて、点灯します。
豆球が消灯するとき(明るい時)の回路の動作は次の通りです。
  1. 明るくなるとCdSの抵抗値が10kオームとなり、R1を流れた電流は殆どCdsに流れ込み、Q1のベース電流は流れなくなります。
  2. そのために、Q1はOFFとなり、R3を通じてQ2のベースから電流を吸い出さなくなります。
  3. これによって、Q2がOFFになり、豆電球には電流が流れず、消灯します。

点灯時の状態と抵抗値の決定

 この回路は、豆球が点灯しているときの状態を考えると抵抗値を求めることができます。図の@AB…の番号が、箇条書きの番号と対応してますから、見比べながら考えてください。

抵抗値の決定

  1. 豆球を点灯するためには、Q1はONにする
  2. ONになってQ1のVCEは0Vになる
  3. 電源電圧は3Vだから
  4. 豆球には3Vが加わる
  5. 3V、200mAの豆球を使っているから
  6. Q2のコレクタには200mAの電流が流れる
  7. 仕様書より、Q2のhFEは120〜240となっているが、電流の不足で完全にONしないと困るので、小さいほうの120を計算に使う。
  8. をhFEで割って、オーバードライブ(3)を掛けると、ベース電流5mAが求まる
  9. 電流の流れているトランジスタのVBEは約0.7Vである。
  10. R2はICBOの悪影響を避けるためのRBEである。A1020ではICBOが1μAあるので、1μAが流れても0.1V(絶対にIが流れない電圧)しか電圧が生じないように考えて、R2の値は1kΩとする
  11. 1kΩのR2に、VBEの0.7Vが加わっているから、R2には、0.7mAの電流が流れる
  12. R3には、R2から0.7mAが、Q2から5mAが流れ込むので、合計5.7mAの電流が流れる。
  13. Q1もONしているはずだから、
  14. Q1のVCEは0Vになる。
  15. R3に加わる電圧は、電源電圧の3Vから、Q2のVBEとQ1のVCEを引いたものとなり、2.3Vである。
  16. 2.3V加わって、5.7mA流れるのだから、R3の値は404Ωとする。
  17. Q1のhFEは350〜700であるが、完全にONにするために、低いほうの350を使用して設計する
  18. コレクタ電流3.7mAをfFE350で割って、オーバードライブの3を掛けると、ベース電流の49μAが求まる。
  19. トランジスタに電流が流れているとき、VBEは概ね0.7Vである。
  20. 暗いときCdSの抵抗値は10MΩと高く、0.7V掛かっても流れる電流は、0.07μAである
  21. R1には、Q1のベース電流(49μA)とCdSの電流(0.07μA)が合わさって流れる。しかし、CdSの電流はベース電流に比べて十分に小さいので無視でき、R1には、49μAが流れる
  22. 電源電圧が3V、Q1のVBEが0.7Vだから、R1には2.3Vが加わっている。
  23. 2.3V加わって、49μAの電流が流れるのだから、R1の値は47kΩとする。

消灯時の状態

 周囲が暗くなり、CdSの抵抗値が10kΩになると、豆球が消灯するか、考えてみます。

抵抗値の決定

  1. 周囲が明るくなると、CdSの抵抗値は10kΩに下がる
  2. R1は47kΩである。
  3. だから、CdSとR1no直列合成抵抗は10k+47kで、57kΩである。
  4. ここに電源電圧3Vが加わっているから、
  5. CdSには、53μAの電流が流れる
  6. 従って、10kΩのCdSには、0.53Vの電圧が発生する
  7. 温度などの条件にもよるが、Q1のベース電圧が0.53Vであれが、Q1はOFFとなる。
    温度が高くなるとVBEの値が低下するので、室内の照明くらいでは、完全にQ1がOFFしない可能性もある。
    そのような場合は、R1を100kΩに変えてやると、それほど強くない光でもOFFするようになる。
    このとき、Q1のオーバードライブは1.5程度しか確保できていないが、1815はhFEのリニアリティが高く、オーバードライブ1.5でも、この構成の回路なら、十分満足な程度にONすることができる。
  8. その結果Q1のコレクタ電流は0mAとなる。
  9. 当然、Q2のベース電流も0mAとなる。
  10. その結果Q1はOFFとなり、
  11. 豆球に流れる電流は0mAとなり、
  12. 電球は消灯する

作ってみよう

設計値と実測値の違い

「通りにくさ」と「とおり易さ」

 抵抗を買うときは、例えば「220Ωの抵抗を下さい」、というように、「抵抗」の値で呼びます。しかし、その逆数の「コンダクタンス」で表すこともできます。

抵抗とコンダクタンス

 抵抗とコンダクタンスは次の関係にあります。抵抗は「電流の通りにくさ」、コンダクタンスは「電流の通りやすさ」をあらわし、お互いに逆数の関係にあります。

抵抗とコンダクタンス

 抵抗[Ω](OHM)のが逆数が、コンダクタンス[ひ](MHO)というのは、値が逆数なら、単位の記号も上下逆、読み方も逆さま、というふうに、とても愛嬌があったのですが、新しい単位系では、抵抗[S](SIMENS)を使うことになりました。
 しかし、分かり易く洒落も利いているので、このページでは「Ω」と「ひ」を使います。Ωを上下逆さまにした記号はテキストで表示できないので、ひらがなの「ひ」を使います。

誰でも知ってる直列合成抵抗

 2本の抵抗を直列につなぐと、2本の抵抗の値を足したものになります。

直列合成抵抗

公式なら知ってる並列合成抵抗

 2本の抵抗を並列につないだときの値は、下の公式で求めることができます。

並列合成抵抗の公式

 しかし、その理由は分かりますか?

直列合成抵抗

  1. まず、左右の抵抗の「通りにくさ[Ω]」を「通りやすさ[ひ]」に置き換えます。
  2. 電流は、右の抵抗を通ることも、左の抵抗を通ることもできますから、並列抵抗の「通りやすさ」は左右の抵抗の「通りやすさ」を足したものになります。
  3. 左右の抵抗の合成抵抗、つまり、「通りにくさ」を知りたければ、上で求めた「通りやすさ」を逆数にして、「通りにくさ」に変換します。
  4. すると、丸覚えしている並列合成抵抗の公式になっています。

並列合成抵抗の横着な書き方

 並列抵抗を計算するには、分数の分数が出てくるので、書くのが面倒です。そこで、「//」という記号を使って、並列抵抗の計算を簡単に表すことができます。

直列合成抵抗

交流とその周期や周波数

 周期的に向きや大きさが変化する電圧や電流を「交流」と呼びます。下の図で言えば、青線が1Vの直流、赤線が交流(注意:1Vの交流ではありませんよ)です。

交流電圧と電流の図示

 交流が繰り返す速さは「周期」(波一回分の時間)や、周波数(1秒間にやってくる波の回数)で表します。上の図では、波一回の時間が0.5秒なので、周期0.5[秒]、あるいは、周期500[ms](ミリセカンド)です。また、一秒間に2回波がやって来るので、周波数は2[Hz](ヘルツ)です。

交流の大きさ

 1Vの交流とはどのような交流でしょうか。同じ「1V」と呼ぶからには、交流の1Vも、直流の1Vと同じ威力がある筈です。そこで、次の図のような実験をしてみました。

直流の1Vと交流の1V

 そのときの交流の大きさを調べると、下の図のようになっていました。

1Vの交流

 1Vの交流(AC1V、または、1VAC)の一番高い電圧は1.41V、一番低い電圧は−1.41V、谷の底から山の頂上までのでんあつは、2.82Vとなっています。
 正確には、1Vの交流の最大電圧は+√2V、最低電圧は−√2Vになります。
 谷の底から、山の頂上までの電圧ので交流の大きさを呼ぶことが良くあります。測定し易いからです。その場合、2.82VP−P(ピーク・トゥ・ピーク)と「P−P」の記号を後ろに付けて呼びます。
 つまり、1Vの直流と同じ明るさで豆電球を光らせることが出来るのは、AC1Vの交流で、別の言い方では、2.82VP−Pの交流です。

1Vの交流

 1Vの交流の最大電圧が、1.41Vと1Vより高くなるのはなぜでしょう。交流のマイナス部分を上に折り返して、直流とくらべてみると良く分かります。
 上の図で青に塗りつぶした部分では交流が直流より小さくなっています。この負けた分を交流はどこかで取り戻さなくてはなりません。そこで、赤に塗りつぶした部分で直流より高くなることで、青く塗りつぶした部分で負けた分を取り返して、同じ威力を出しているわけです。

交流電圧と電流の図示

 交流の電圧と電流は波線で図示します。(しかし、私の使っているツールは波線を書く機能がなく、波線を書くには、とてつもなく手間がかかるので、途中で挫折して、交流を点線で図示することになるかもしれません。

交流電圧と電流の図示

ポイントは
  1. 交流電圧と電流を波線矢印で表します
  2. 交流電圧と電流をの記号を区別するために、電圧の矢印はお尻に横棒を付けます
    電圧を両方に矢じりのついた記号で表記する方法がありますが、これでは電圧の方向が分からないからです。
  3. 主に交流の大きさはピーク・トゥ・ピーク値(後で説明します)で示します

交流と直流が同時に流れる回路

 下図のような回路を考えましょう。交流(6VP−P)と直流(3V)が両方加わっており、直流と交流が同時に流れています。

交流と直流が同時に流れる回路

 考え方のポイントは一つ!。直流と交流は別々に考える。つまり、「直流を考えるときは交流の事は忘れ、交流のことを考えるときは直流のことを忘れる」ということです。

直流について考える(交流のことは忘れる)

 まず、交流のことは忘れ、直流のことだけ考えて見ましょう。交流の事は忘れるのですから、6VP−Pの交流電圧源があってもシカトして、ただの電線だと考えます。

直流だけ考えた回路(交流は無視)

 そうすると、R2とR3は並列で、1Ω、そこにR1が直列に繋がっていますから、全体の合成抵抗は3Ωとなります。そのため、回路全体には1A、そして、R1には1A、R2とR3には0.5Aの直流電流が流れます。

交流について考える(直流のことは忘れる)

 次に、直流のことは忘れ、交流のことだけ考えて見ましょう。直流の事は忘れるのですから、3Vの直流電圧源があってもシカトして、ただの電線だと考えます。

交流だけ考えた回路(直流は無視)

 そうすると、R1とR3が並列で、1Ωとなり、これに、R2が直列に繋がっていますから、全体の合成抵抗は3Ωとなります。そのため、回路全体には2AP−Pの交流が流れ、R2にも2AP−P、R1とR3には、1AP−Pの電流が流れます。

直流と交流を合体させてみる

 このように、別々に考えた直流と交流の流れ方を、一つの図にまとめてみましょう。

直流と交流の流れ方

 交流と直流は、お互い干渉することなく、大きさや向きも自由気ままに、独立したものとして流れていることが分かります。

交流を扱うトランジスタ回路

 それでは、直流と交流の両方が流れるトランジスタ回路の動作を考えて見ましょう。下図の増幅回路で直流出力電圧Vooと信号(交流)出力電圧vo、直流入力電流IBBと信号(交流)入力電流ibを求めます。

直流と交流の流れるトランジスタ回路

 直流と交流の両方が流れる回路を考えるポイントは「直流と交流は別々に考える」でしたね。

直流について考える(交流のことは忘れる)

 まず、交流のことは忘れ、直流のことだけ考えて見ましょう。交流の事は忘れるのですから、1.026VP−Pの交流入力があってもシカトして、最初はただの電線だと考えます。また、コンデンサは直流を通しませんから、これもシカトです。

直流と交流の流れるトランジスタ回路

  1. トランジスタのベースには3.7Vの電圧が掛っています。
  2. 通常に動作しているトランジスタのVBEは0.7V程度です
  3. このため、RE1とRE2(合わせて3kΩ)には3Vの電圧が加わります。
  4. その結果、RE1とRE2には1mAの電流が流れます。つまり、エミッタ直流電流IEEは1mAとなります。
  5. EEが1mAとなれば、ICCも1mAとなります。
  6. 1mAのICCによって、5kΩのRにはVRL=5Vの電圧が発生します。
  7. 電源電圧は12Vです。
  8. 出力直流電圧Vooは電源電圧の12Vから、VRLの5V下がった電圧ですから、12−5=7Vとなります
  9. ベースに流れ込む直流電流IBBはICC÷hFEなので、10μAとなります。

交流について考える(直流のことは忘れる)

 次に、直流のことは忘れ、交流のことだけ考えて見ましょう。直流の事は忘れるのですから、3.7Vの直流電圧源があってもシカトして、ただの電線だと考えます。

交流だけを考えた回路(直流は無視)

  1. エミッタ等価インピーダンスreは26mV÷IEEで計算でき、この場合、26Ωとなります。
    この「26mV」は円周率が「3.14」であるのと同様の定数で、回路の電圧や電流に影響されず(シリコンバイポーラトランジスタなら)いつも同じです。
  2. コンデンサは交流を完全に通しますから、エミッタの信号電流ieはRE2には流れず、図に赤で示す経路を通ります。つまり、ベースの裏側から、reを通り、RE1とコンデンサを経由してアースへ向かいます。ですから、エミッタ側のインピーダンスは26Ω+1kΩで1026Ωです。
  3. ベースには1.026mVP−Pの信号電圧が加わっています。
  4. ベース信号電圧(1.026mV)と、エミッタ側のインピーダンス(1026Ω)からオーム則により、エミッタ信号電流が決まります。
    ie=ベース信号電圧÷エミッタ側インピーダンス
     =1.026VP−P÷1026Ω
     =1mAP−P
    となります。
  5. コレクタにもieと同じ1mAP−P電流が流れます。
  6. 5kΩのRに1mAP−PのIRLが流れるので、5VP−Pの電圧が生じます。
  7. ところで、電源も交流から見れば0Vですから、アースと出力端子の間にも5VP−Pの電圧が生じます。しかし、矢印が下を向いています。
  8. そこで、矢印を上向けに直すと出力信号電圧は−5VP−Pと求められます。
    信号(交流)成分を約5倍に増幅していますね。この増幅率は、R/(re+RE1)で求まるのです。
  9. また、ベースに流れる信号電流ibは、コレクタ信号電流ic÷hFE=10μAと分かります。

直流と交流を合体させてみる

 このように、別々に考えた直流と交流の流れ方を、一つの図にまとめてみましょう。

直流と交流を全部書いてみた

 非常にややこしくなってしまいました。やはり、直流と交流は分けて考えたほうがよいですね。
 さて、出力端子には、7Vの直流と5VP−Pの交流が同時に現れますから、下の図に赤線で示すような、7Vを中心に、上下に2.5Vずつ上下する電圧が出てきます。交流の大きさは約5倍に増幅されています。この増幅率の5倍は、概ねR÷R1=5k÷1kで求めることができます。

出力端子の電圧Vのグラフ

エミッタフォロア「工事中」

 エミッタから出力を取り出す増幅器で、大きな電流を出力することができます。

入力インピーダンスとは

 ある回路の入力の交流抵抗がどのくらいあるか?ということです。つまり、下の図で、赤色で示すZiの値が何Ωか、とうことです。

入力インピーダンスとは

 測定の仕方は簡単で、交流信号viを加えて、流れた交流信号電流iiを測定し、入力インピーダンスZiは
Zi=vi/ii
で求めます。

入力インピーダンスを測定する

この例では…
Zi=10VP−P÷5AP−P=2Ω
となります。

回路図から入力インピーダンスを求める

 実は、先ほどの回路、フタを開けてみると、次図のような配線になっていました。さて、回路から入力インピーダンスを求めてみましょう。


内部の回路

 C点のDC電圧は0Vつまり、アースです。また、AC電圧も0Vつまり、交流で見てもアースされています。
 では、B点はどうでしょうか、DC電圧は5V、明らかにアースではありません。しかし、AC電圧は0V、交流で見るとアースなのです
 つまり、直流と交流は全く別物と考えるので、B点には直流の5V掛っていますが、交流から見ればアースとなります

回路図からインピーダンスを求める

 これまで考えたことをまとめて、回路図を書き直すと上図のようになります。
 D点から下を見るとR2の4Ωがあり、D点から上を見るとR1の4Ωがあります。A点から見れば2つの4Ωは並列になるので、Zi=4Ω//4Ω=2Ωと求められます。

出力インピーダンスとは

 ある回路の出力の交流抵抗がどのくらいあるか?ということです。つまり、下の図で、赤色で示すZの値が何Ωか、とうことです。
 入力インピーダンスと違うのは、信号(交流)出力を出しでいる端子のインピーダンスだというところです。

出力インピーダンスとは

 測定の仕方はちょっと面倒。次の3ステップで行います。
  1. 出力端子に電流を流さず、出力信号電圧vo’を測定します

    開放出力電圧vo'を測定する
    測定したvo’が2VP−Pであれば、箱の中にある信号源の電圧は恐らく2VP−Pでしょう。
  2. 出力端子を交流的に短絡(ショート)して、出力電流Ioを測定します

    短絡出力電流ioを測定する。
    ここでは、1AP−Pの電流が流れました。
    通常は交流のみを短絡するために、コンデンサで短絡したと考えます。
  3. Zo=vo’÷Ioと計算して出力インピーダンスを求めます
この例では…
Zo=2VP−P÷1AP−P=2Ω
となります。

回路図から出力インピーダンスを求める

 実は、先ほどの回路、フタを開けてみると、次図のような配線になっていました。さて、回路から出力インピーダンスを求めてみましょう。


回路からインピーダンスを求める


各点からみたインピーダンス

回路からインピーダンスを求める手順は次の通りです。
  1. A点から信号源を見ると0Ωです。(信号源の出力インピーダンスは0Ωだからです)
  2. B点から信号源の方向を見ると、信号源の0ΩとR1の4Ωが直列になっているので、4Ωに見えます
  3. C点からアースを見ると、R2があるので4Ωに見えます。
  4. 出力端子のD点から信号源側を見ると、B点の4ΩとC点の4Ωが並列に見えるので、出力インピーダンスは、4Ω//4Ω=2Ωとなります。

トランジスタ回路のインピーダンス

ベースのインピーダンス

EEが1mA流れ、reが26Ωとなっている、下図のトランジスタのベースの入力インピーダンスを考えてみましょう。

ベースのインピーダンス


  1. E点からアース方向を見ると、Rがあるので、インピーダンスは1kΩである。
  2. A点(トランジスタのベースの裏側)から見ると、reとRが直列に見えるので、1kΩ+26Ωで1026Ωに見える。
  3. トランジスタは電流をhFE倍に増幅するので、B点(ベース)からみると、インピーダンスはA点のhFE倍に見える。
  4. 従って、この回路のベースの入力インピーダンスはhFE×(re+R)で計算でき、100×(26+1000)=102.6kΩとなる。

エミッタのインピーダンス

EEが1mA流れ、reが26Ωとなっている、下図のトランジスタのエミッタの出力インピーダンスを考えてみましょう。

ベースのインピーダンス


  1. B点から入力側を見ると、50kΩが見える
  2. A点(トランジスタのベースの裏側)からは、B点の50kΩが(電流がhFE倍に増えるため)hFE分の1に見えるので、500Ωに見える
  3. E点からは、A点の500Ωとreの26Ωが直列に見えるので、526Ωに見える
  4. 逆にD点では、Rがあるため、1kΩが見える
  5. 出力端子F点では、E点の526ΩとD点の1kΩがパラに見えるので、526//1000=345Ωに見える

コレクタのインピーダンス「工事中」

 トランジスタのコレクタのインピーダンスが∞であることを説明します。

2段増幅器「工事中」

 エミッタ接地とエミッタフォロアを組み合わせた2段増幅器の設計方法を検討します。

差動増幅器「工事中」

 トランジスタの欠点を打ち消し、抜群の安定性をもつ作動増幅器の動作原理と設計方を説明します。

カレントミラー「工事中」

 作動増幅器やあとで説明する能動負荷に使用する基本回路であるカレントミラーの動作原理と設計方法を説明します。

設計と試作(ミニパワーアンプ)「工事中」

 これまでの知識を活かして、ポータブルオーディオを接続してスピーカーを鳴らすことのできる「完全ディスクリート・ミニパワーアンプ」を自力で設計・試作します。ここまで来れば、かなりの設計力が付いています。

能動負荷「工事中」

 高い増幅率を得ることのできるテクニックを紹介します。